Fuels derived from starch digestion have different effects on energy intake and metabolic responses of cows in the postpartum period.- Academic Article uri icon

Resumen

  • Absorbed fuels from the digestion of starch include propionic acid (PA) produced by ruminal fermentation and glucose (GLU) from intestinal digestion, which may be partially metabolized to lactic acid (LA) by intestinal tissues. Our objective was to evaluate the effects of these fuels on dry matter intake (DMI) and feeding behavior of cows in the postpartum period. We hypothesized that these fuels affect feed intake differently and that their effects are related to differences in their hepatic metabolism. Glucose was expected to have little effect on feed intake because little or no GLU is extracted from the blood by the liver. Whereas both LA and PA are anaplerotic and can stimulate oxidation of acetyl CoA in hepatocytes, hepatic extraction of PA is greater than LA, which depends on cytosolic redox state. Continuous isoenergetic infusions (150 kcal of ME/h) of PA, LA, or GLU or no infusion were administered abomasally to 8 ruminally cannulated multiparous Holstein cows (12.4 ± 6.2 d postpartum) in a duplicate 4 × 4 Latin square design experiment, with four 1 d infusion periods, balanced for carry over effects. Treatment sequences were assigned to cows randomly, and treatments included control (CON, no infusion), PA (0.41 mol/h), LA (0.46 mol/h), and GLU (0.22 mol/h). Solutions containing treatments were infused at 500 mL/h for 22 h/d and provided ∼3.3 Mcal/d. Feeding behavior was recorded by a computerized data acquisition system. Gross energy digestibility of the diet was determined for each cow and used to calculate metabolizable energy intake (MEI) from the diet. Total MEI was calculated as the sum of MEI from the diet plus energy from infusions. Data were analyzed statistically with a mixed model including the fixed effect of treatment and random effects of block and cow within block. Each treatment was compared with CON by contrasts. Compared with CON, PA decreased DMI by 24% (14.3 vs. 18.9 kg/d) and total MEI by 13% (34.8 vs. 40.2 Mcal/d) with a tendency to decrease meal frequency. Lactic acid decreased DMI by 14% (16.3 vs. 18.9 kg/d) compared with CON by decreasing meal size 20% but did not affect MEI. Glucose infusion did not affect DMI or MEI. Treatment effects on DMI and MEI were consistent with their expected effects on hepatic oxidation. Depression of feed intake in diets containing highly fermentable starch is likely because of differences in hepatic metabolism.

Fecha de publicación

  • 2018