Resumen
- In Bacillus subtilis, the Spx transcription factor controls a large regulon in response to disulfide, heat, and cell wall stresses. The regulatory mechanisms that activate the Spx regulon are remarkably complex and involve changes in transcription, proteolysis, and posttranslational modifications. To identify genes involved in Spx regulation, we performed a transposon screen for mutations affecting expression of trxB, an Spx-dependent gene. Inactivation of ctsR, encoding the regulator of the Clp proteases, reduced trxB expression and lowered Spx levels. This effect required ClpP, but involved ClpC rather than the ClpX unfoldase. Moreover, cells lacking McsB, a dual function arginine kinase and ClpCP adaptor, largely reverted the ctsRphenotype and increased trxB expression. The role of McsB appears to involve its kinase activity, since loss of the YwlE phosphoarginine phosphatase also led to reduced trxBexpression. Finally, we show that Spx is itself a regulator of the ctsR operon. Altogether, this work provides evidence for a role of CtsR regulon members ClpC, ClpP, and McsB in Spx regulation and identifies a new feedback pathway associated with Spx activity in B. subtilis.